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Abstract
Soil nutrient regimes (SNRs) are often incorporated in ecosystem classifications. Evaluation of actual nutrient levels associ-

ated with these SNRs and the development of complementary soil chemistry regimes (SCRs) could broaden their utility. Using
data from 618 forest stands in northwestern Ontario, we developed five-category SCRs using K-means clustering and examined
relationships among individual nutrients, SCRs, and the SNRs of the Canadian National Vegetation Classification Associations
and the Ontario Ecological Land Classification Ecosites. F, A, and B horizon samples were analyzed for organic C (OrgC), total
N (TotN), C:N ratio (C:N), cation exchange capacity (CEC), exchangeable bases, base saturation (BaSat), and pH. CEC, pH, and
BaSat showed good correspondence across horizons, and together with C:N accounted for much of the variation in chemical
properties. There was broad agreement between Association and Ecosite SNRs and B horizon (BHorz) and All horizon (AllHorz)
SCRs. C:N decreased while pH and cation metrics increased with increasing SNR and SCR richness. User’s accuracies (SNRs vs.
SCRs) for the classifications ranged from 31%–39% but increased to 80%–86% for SNR values within ±1 SCR class. Classification
trees identified pH class, soil texture, and overstory composition as the principal field-measured factors related to BHorz SCRs.
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Introduction
In Canada, forest sites are commonly described at the stand

and operational management/mapping level using ecosys-
tem classifications (ECs) and/or ecological land classifications
(ELCs) (e.g., Corns 1992; Meades and Roberts 1992; Sims and
Uhlig 1992; Ontario Ministry of Natural Resources 2009a,b;
McLaughlan et al. 2010; Saucier et al. 2010; Keys et al. 2011;
Mackenzie and Meidinger 2017; Baldwin et al. 2019). Most
of these classifications are hierarchical, with the upper lev-
els representing broad climatic, geologic, and/or vegetation
zonations and the lower levels addressing finer scale vari-
ations in site conditions, landforms, vegetation characteris-
tics, and soil properties (e.g., Crins et al. 2009; Baldwin et al.
2019).

At the finest scales, these classifications usually regard
soil moisture and nutrient conditions as the primary envi-
ronmental gradients influencing forest vegetation. Schemat-
ically, these gradients are typically represented by edatopic
grids consisting of soil moisture regime (SMR)——soil nutrient
regime (SNR) combinations that position individual vegeta-
tion or site types along regional gradients of time-averaged
soil moisture and nutrient availability (Wilson et al. 2001;
MacKenzie and Meidinger 2017). SMRs are based on pedon

characteristics such as soil texture, coarse fragment content,
soil depth, humus form, and the presence of mottled or
gleyed horizons (Brais and Camire 1992; Denholm et al. 2009;
DeLong et al. 2011). This represents a semiquantitative ap-
proach, given the strong linkages between these attributes
and soil hydrologic properties such as hydraulic conductiv-
ity and water holding capacity (Assouline and Or 2013). In
contrast, SNRs are based on inferred qualitative relationships
using a variety of morphological descriptors, including geol-
ogy, landforms, soil texture, humus form, vegetation typol-
ogy, and plant indicator species (Klinka et al. 1994; DeLong
et al. 2011; Keys et al. 2011). In Ontario, SNRs were often
inferred from gradients in the principal axes of vegetation
ordinations and linked to the classification typologies (vege-
tation types) by superimposing the latter on the ordination
diagrams (Sims et al. 1997; Chambers et al. 1997; Taylor et
al. 2000). In other cases, they were determined using multi-
variate analyses of morphological pedons and site factors. In
either case, they were assigned a posteriori at the classifica-
tion unit rather than at the individual plot level.

Soil nutrients are key elements governing the struc-
ture and function of forest ecosystems. They directly affect
plant growth (Binkley and Fisher 2020), stand dynamics and
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competitive interactions (Coates et al. 2013), carbon cycling
(Fernández-Martínez et al. 2014), biodiversity (Fraser et al.
2015), and a wide variety of ecosystem processes and services
(Chapin et al. 2011). Incorporating quantitative metrics of nu-
trient availability in ECs and ELCs should enhance their use-
fulness for developing sustainable forest management guide-
lines (Jeglum et al. 2003; Thiffault et al. 2014; Keys et al. 2016;
Ontario Ministry of Natural Resources 2022), addressing car-
bon and nutrient sequestration (Kranabetter 2009; Shaw et
al. 2015), investigating potential impacts of climate change
(Dieleman et al. 2012; Wieder et al. 2015) and atmospheric
deposition (Marty et al. 2017), and examining biodiversity re-
lationships (Aanderud et al. 2018).

To date, most Canadian studies quantifying the soil chem-
ical attributes of SNRs have focused on specific stand
types and climatic conditions in British Columbia and Que-
bec. Emphasis has been placed on (1) providing quantita-
tive estimates of particular growth-limiting nutrients (e.g.,
mineralizable-N) associated with existing SNRs and (2) exam-
ining linkages between SNRs and the productivity (dominant
height/site index) of particular tree species (e.g., Bergeron and
Bouchard 1983; Kabzems and Klinka 1987a, b; Courtin et al.
1988; Klinka et al. 1994; Wang and Klinka 1996; Kayahara et
al. 1997; Wang 1997; Chen et al. 1998; Splechtna and Klinka
2001; Hamel et al. 2004). Here we extend the first approach by
using chemistry metrics measured across multiple horizons
and a larger landscape to develop separate soil chemistry
regimes (SCRs) using data-intensive statistical approaches.
These are then compared with two different empirical SNR
classification schemes.

In northern Ontario, two ecological classification systems
for forests are now available: the stand level (0.1 – 10 ha)
eastern boreal Associations of the Canadian National Vege-
tation Classification (CNVC) (Chapman et al. 2020) and the
operational management/mapping level (10–100 ha) Ecosites
of the Ontario Ministry of Natural Resources and Forestry’s
(OMNRF) Ecological Land Classification (Ontario Ministry of
Natural Resources 2009a, b). The CNVC Associations are based
on the vegetation composition and abundance of natural
stands >40 years old and pertain to individual stands. The
Ecosites are based on stable landscape features (e.g., substrate
origin and depth, texture, moisture, and landform) and domi-
nant overstory species (Ontario Ministry of Natural Resources
2009a, b). Here, we examine the linkages among several soil
chemical variables associated with soil fertility (Schoenholtz
et al. 2000; Binkley and Fisher 2020) and their relationship
with the CNVC Association and Ontario’s Ecosite SNRs by:

1) exploring soil nutrient relationships within and across up-
land forest soil horizons;

2) classifying soil nutrient attributes to develop upland SCRs
based on (a) B horizon values (BHorzSCRs) and (b) com-
bined values for the F, A, and B horizons (AllHorzSCRs);

3) investigating how these SCRs and individual chemistry
variables vary within and across upland Associations and
Ecosites, and their associated SNRs; and

4) determining relationships among the derived B horizon
SCRs and site/landform conditions, soil pedon characteris-

Fig. 1. Location of the study area in northwestern Ontario.

tics, and overstory vegetation to provide generalized clas-
sification trees for estimating SCRs.

Methods

Study area and data description
The study area encompasses about 90,000 km2 of boreal

and sub-boreal forests in northwestern Ontario, extending
from Ignace to the Manitoba border (Fig. 1). The region is un-
derlain by Archean (Precambrian) felsic intrusive rocks of the
Superior Province, overlain in some areas by Phanerozoic sed-
imentary rocks (Thurston 1991). Superimposed on these are
distinct landforms resulting from glaciation 10,000–12,000
years B.P. Common surficial deposits include shallow drift,
undulating ablation and basal tills, morainal and drumlin
features, and large expanses of predominantly thin glacial
sediments over rolling to rugged bedrock (Sims and Baldwin
1991; Wester et al. 2018). Glaciofluvial and glaciolacustrine
deposits are also common but more localized. The climate
varies gradually across the region, with mean annual tem-
peratures between 1.7 ◦C and 2.7 ◦C, mean annual precipi-
tation ranging from 615 to 880 mm, and average growing
season lengths of 160–190 days (Crins et al. 2009). The up-
land forests typically include pure and mixed stands of jack
pine (Pinus banksiana Lamb.), trembling aspen (Populus tremu-
loides Michx.), white birch (Betula papyrifera Marsh), balsam fir
(Abies balsamea (L.) Mill.), white spruce (Picea glauca (Moench)
Voss), and black spruce (Picea mariana (Mill.) BSP). On wetter
sites, eastern white cedar (Thuja occidentalis L.), balsam poplar
(Populus balsamifera L.), black ash (Fraxinus nigra Marsh.), and
tamarack (Larix laricina (Du Roi) K. Koch) also occur, whereas
eastern white pine (Pinus strobus L.) and red pine (Pinus resinosa
Ait.) are predominantly found across the southern ecotone
(Sims et al. 1997; Wester et al. 2018).

During northwestern Ontario EC field campaigns, site, soil
pedon, and vegetation data were collected from approxi-
mately 2000 100 m2 plots in forests >40 years old. Plots were
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Table 1. Site, soil pedon, and stand predictors used in SNR and SCR analyses.

Variable Type Categories (poor to rich)

Bedrock mineralogy1

(BedMin)
Ordinal (n = 5) (1) Granite, quartzite; (2) granodiorite, gneiss, rhyolite, sandstone; (3) diorite, argillite,

conglomerate, breccia; (4) gabbro, schist, slate, mudstone, shale; and (5) basalt,
ultramafics, limestone, calcareous sedimentary deposits.

Mode deposition2,3 (ModDep) Multinomial
(n = 3)

(1) Glaciofluvial, (2) till, (3) lacustrine

Stand composition (ConPct,
PinePct, DecPct)

Continuous (%
basal area)

Coniferous (ConPct), pine only (PinePct), deciduous (DecPct)

Species type (SppType) Multinomial
(n = 3) (% basal
area)

Conif (>75% coniferous), decid (>75% deciduous), mixed (25%–75% coniferous).

Soil moisture regime3 (SMR) Ordinal (n = 7) (1) Dry, (2) moderately fresh, (3) fresh, (4) very fresh, (5) moderately moist, (6) moist, (7)
very moist

Drainage class3 (DrainCl) Ordinal (n = 6) (1) Very rapid, (2) rapid, (3) well, (4) moderately well, (5) imperfect, (6) poor

Topographic position3

(TopPos)
Ordinal (n = 4) (1) Crest/upper slope, (2) mid slope, (3) lower and toe slope, (4) depression

CSSC order4 (CSSOrd) Multinomial
(n = 4)

Podzol, brunisol, gleysol, luvisol

Humus form5 (HumForm) Ordinal (n = 4) (1) Peatymor, (2) mor, (3) moder, (4) mull

Coarse fragments3 (CFCont) Ordinal (n = 5) (1) Absent, (2) few, (3) moderate, (4) abundant, (5) very abundant

Carbonate occurrence3 Binary Yes/no

Forest floor thickness
(FFThick)

Continuous (cm) <40 cm (upland sites only)

A horizon type4 (AHzType) Binary (n = 2) Ae, Ah

B horizon type4 (BHzType) Multinomial
(n = 4)

Bf or Bh, Bm, Bg, Bt

B horizon texture (LabTxt) Continuous (%) BSand (Sand %), BClay (Clay %)

B horizon texture class3

(BTxtCl)
Ordinal (n = 6) (1) Coarse-medium sand, (2) fine–very fine sand, (3) silty sand, (4) sandy-silt loam, (5)

loam-clay loam, (6) clay

B horizon thickness (BThick) Continuous (cm) B horizon thickness

B horizon pHCa class
(pHClass)

Ordinal (n = 6) 3.5–4.0, 4.1–4.5, 4.6–5.0, 5.1–5.5, 5.6–6.0, and 6.1–7.7

Note: Categorical variables were treated as binary, multinomial, or ordinal variables.
1Lloyd et al. 1990; DeLong et al. (2011); Keys et al. (2016); Ontario Geological Survey (2011).
2Ontario Geological Survey (2005).
3Denholm et al. (2009).
4Soil Classification Working Group (1998).
5Sims and Baldwin (1996).

selected to be as internally homogenous as possible, based
on geomorphology, soil strata, landscape position, and plant
community composition. Although sampling was conducted
across the full range of site conditions, given the glacial his-
tory of the region, the data sets primarily consisted of plots
set out on sandy, stony tills. These data were subsequently
used to classify CNVC Associations (Chapman et al. 2020) and
OMNRF ELC Ecosites (Racey et al. 1996; Ontario Ministry of
Natural Resources 2009a, b) and to interpret SMR and SNR re-
lationships for these typologies. Ecosite SNRs were composed
of five classes (very poor, poor, medium, rich, and very rich)
based on composite soil and site features (Fig. S1), while As-
sociation SNRs were graphically depicted using three broad
categories, but with overlap permitted between categories
(Chapman et al. 2020). For this initiative, Association authors
consulted plot data summaries to assign each Association to
one of five SNRs (Table A1).

Site information used in our plot-level analyses included
topographic position (TopPos), mode of deposition (Mod-
Dep), stand composition, and dominant tree species type

(SppType) (Table 1). Soil pedon information included field-
estimated coarse fragment content (CFCont); B horizon thick-
ness (BThick); A and B horizon types (HzType); B horizon tex-
ture class (BTxtCl); solum depth; forest humus form (Hum-
Form); CSSC soil order (CSSOrd) (Soil Classification Working
Group 1998); and derived SMR and drainage class (DrainCl)
(Denholm et al. 2009). Vegetation data included overstory
stand composition and species type. We also estimated plot-
level bedrock mineralogy using spatial data (Ontario Geologi-
cal Survey 2011) and categorized this using five nutrient rich-
ness classes (BedMin) following Lloyd et al. (1990), DeLong et
al. (2011), and Keys et al. (2016).

Soil chemistry
Although not used in determining Associations, Ecosites,

or their associated SNRs, soil samples were systematically col-
lected for chemical analyses from 618 10 × 10 m EC plots at
the same time as pedon descriptions were being compiled.
This involved taking bulk samples from each major horizon
within a single soil pit, established as close to the centre of
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the plot as feasible. For any given horizon, material was col-
lected from across the pit face.

Chemical variables subsequently measured or calculated
were those commonly associated with forest soil quality, pro-
ductivity, and health (Schoenholtz et al. 2000; Thiffault et
al. 2014). These included organic C (OrgC), total N (TotN),
C:N ratio (C:N), pH in both water (pHH2O), and CaCl2 (pHCa)
suspensions, effective cation exchange capacity (CEC), ex-
changeable bases (ExBase), and base saturation (BaSat), as
well as mineral soil texture/particle size (LabTxt). OrgC was
determined by loss-on-ignition in a muffle furnace at 500
◦C, TotN by the semimicro-Kjeldahl method (Kalra and May-
nard 1991), and pHCa in a 1:2 suspension of soil in CaCl2

(0.01 mol/L). We chose pHCa rather than pHH2O for our anal-
ysis because of the former’s more robust measurement prop-
erties (Miller and Kissel 2010). For mineral soils, LabTxt was
determined using the hydrometer method, while ExBase and
CEC were assessed using a dilute unbuffered silver thiourea
solution (0.01 mol/L Ag+). Pleysier and Juo (1980) found this
method gave good correspondence with CEC and ExBase val-
ues obtained using neutral NH4OAc displacement for ExBase
and unbuffered 1 mol/L KCl extraction for exchange acidity
(Al + H). They recommended the method for soils dominated
by variable-charge colloids and low-activity clays.

We concentrated on upper B horizon relationships because
this horizon represents the principal diagnostic horizon and
the primary soil nutrient store for most upland boreal for-
est soils (e.g., Jobbágy and Jackson 2001; Callesen et al. 2007),
but we also considered the combined influence of the F, A,
and upper B horizons. All nutrients were expressed as con-
centrations on a dry mass basis. While not representing to-
tal nutrient quantities, the use of concentrations avoids the
need for accurate estimates of coarse fragment content, soil
depth, and fine fraction (<2 mm) bulk density, all of which
can be problematic. Soil chemical concentrations have been
used previously to quantify soil nutrient regimes (e.g., Klinka
et al. 1994; Splechtna and Klinka 2001), and Stevenson et al.
(2015), in a New Zealand soil classification study, found little
difference in overall principal components analysis (PCA) or
cluster analysis results using soil nutrient concentration vs.
nutrient content (kg ha−1).

Quantitative analysis

Data preparation and assembly

We first screened the data using box and whisker plots to
identify and remove obvious outliers and data input errors
from these historic data sets. We then compiled three data
sets: a master list comprising all plots with the full suite of
chemistry variables for at least one horizon (AllPlots) (695
plots) and the other two containing complete sets of site, soil,
and pedon descriptions, as well as chemistry variables for the
upper B horizon (BHorz) (618 plots) and for the F, A, and up-
per B horizons combined (AllHorz) (428 plots). The reduction
in AllHorz vs. BHorz plot numbers largely reflected the ab-
sence of A horizon samples (and, by inference, the lack of
substantive A horizons per se) for about 10% of the plots.

Next, we used a combination of univariate and multivari-
ate statistics to assess individual nutrients and their com-
posite attributes. To improve normality and/or homogeneity
of variance, we log-transformed OrgC, TotN, C:N, CEC, and
ExBase and arcsine-transformed BaSat. For multivariate anal-
yses, we used a suite of five equally weighted chemical vari-
ables for the A and B horizons (TotN, C:N, BaSat, pHCa, and
CEC) and three equally weighted variables (TotN, C:N, and
pHCa) for the F horizon. ExBase was omitted because of its
high correlation with BaSat and CEC, and because ExBase
values determined using silver thiourea tend to overestimate
those reported using other methods (Pleysier and Juo 1980).
OrgC was omitted because of strong collinearity with TotN
and because once log-transformed, its influence was circum-
scribed by TotN and C:N (log(OrgC) = log(C:N) − log(TotN)).
For some multivariate analyses (e.g., multiple response per-
mutation procedure (MRPP) and K-means clustering), the
transformed chemical variables and related environmental
descriptors were also converted to standard deviates to ac-
count for differences in scale.

Soil nutrient relationships and existing
classifications

We used Spearman rank and Pearson product moment cor-
relations to evaluate relationships among individual nutri-
ents, and PCA to identify and depict the variables accounting
for the greatest variation in the data sets. PCA constructs lin-
early related composite variables (components) along orthog-
onal axes of decreasing covariation (importance). Next, we fo-
cused on the 15 Associations and 22 Ecosites for which we had
at least nine plots with complete BHorz or AllHorz chemistry
data (Tables A1 and A2) by (1) examining relationships among
individual soil chemistry variables and overall Association
and Ecosite SNR categories using one-way analysis of vari-
ance (ANOVA) followed by Tukey’s multiple comparison tests;
and (2) investigating the multivariate compositional similar-
ity among individual Associations and Ecosites with regard
to the suite of BHorz and AllHorz chemistry variables using a
MRPP procedure. MRPP is a multivariate technique whereby
statistical differences between groups are evaluated by com-
paring the average Euclidean distance between all pairs of
points within each group with a Pearson type III distribution
of all possible partitions (McCune and Grace 2002). We ac-
counted for multiple pair-wise hypothesis testing by applying
the Benjamini–Hochberg α correction (Waite and Campbell
2006).

Developing and comparing soil nutrient
classifications

In a separate analysis, we used K-means clustering to de-
velop a new classification of soil nutrient attributes by allo-
cating individual plots to five composite BHorz and AllHorz
SCR classes (BHorzSCRs and AllHorzSCRs, respectively). For
the AllHorz analysis, we equally weighted the nutrients eval-
uated for each horizon. K-means clustering is well recognized
for its ability to form a small number of clusters using the
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local structure within large data sets of continuous variables
(Hastie et al. 2009). We used 20 random starts and a maxi-
mum of 25 iterations with both data sets. Five clusters repre-
sented a near-optimum number as the change in the percent-
age of variation explained (BHorz variation = 39.6%, AllHorz
variation = 59.3%) leveled off with further increases in clus-
ter numbers. To assign each of the five BHorz and AllHorz K-
means clusters to an SCR class, we ranked the cluster modal
and median values for each chemistry variable from lowest
to highest “quality” based on increasing TotN, CEC, ExBase,
BaSat, and pHCa, and decreasing C:N, and then averaged the
individual rankings to assign an overall BHorzSCR and All-
HorzSCR.

We depicted the correspondence of the various classifica-
tions with confusion matrices and evaluated their correspon-
dence using Cramer’s V and Kendall’s τB or τC (also known as
Kendall’s rank correlation coefficient). Cramer’s V represents
the mean square canonical correlation between nominal vari-
ables, and ranges between 0 and 1. Kendall’s τB and τC mea-
sure the rank correlation between two sets of ordered vari-
ables and penalize misclassifications based on their dissim-
ilarity. Values range from 1 (complete agreement), through
0 (random ordering) to −1 (complete inversion). τB applies
when the number of rows = number of columns; τC ap-
plies when this is not the case (Abdi 2007). When compar-
ing SNRs with SCRs (the reference classification), we also cal-
culated the sample-weighted user’s accuracy (the probability
that a plot belonging to a particular Ecosite or Association
and its assigned SNR correspond to the SCR assigned through
K-means clustering). Correlation analysis, ANOVA, K-means
clustering, and confusion matrix evaluations were conducted
using NCSS 11 (NCSS Statistical Software 2016) while PCA and
MRPP were conducted using PC-ORD 6 (McCune and Mefford
2011).

SCR site/soil/overstory relationships

Most SNR field-based classification schemes use a variety
of site, soil pedon, and vegetation descriptors (Table 1 and
Fig. S1) to assign an SNR class to a particular plot (Green
and Klinka 1994; DeLong et al. 2011; Johnson, J.A., P.W.C.
Uhlig, and M.C. Wester (unpublished report)). Pursuing this
approach, we first explored relationships between various
site and pedon characteristics and BHorzSCRs (e.g., Fig. S1).
With continuous and ordered variables, we used multiple re-
gression with variation partitioning (Legendre and Legendre
2012) and Dunn’s nonparametric Kruskal–Wallace multiple
comparison test. With categorical variables, we used confu-
sion matrices. For pHClass, we divided the pHCa data into six
ordered classes (3.5–4.0, 4.1–4.5, 4.6–5.0, 5.1–5.5, 5.6–6.0, and
6.1–7.7).

We then evaluated the ability of these variables to dif-
ferentiate among SCRs using Classification and Regression
Trees (CART) and Random Forests (Hastie et al. 2009). We
did so both with and without pHClass and/or LabTxt to as-
sess the importance of these two laboratory-derived vari-
ables. These nonparametric, recursive-based machine learn-
ing techniques sequentially partition the response variable

using any number of predictor variables without relying on
particular functional forms or a priori models. They can com-
bine categorical, ordinal, and continuous variables and are
well suited to dealing with unbalanced data, missing val-
ues, nonlinear relationships, and higher order interactions
(De’ath and Fabricus 2000). CART produces readily inter-
preted, hierarchical, dichotomous keys that are consistent
with EC/ELC diagnostic approaches and well suited for field
use. We constructed CART classification trees with the R pack-
age rpart (Therneau et al. 2014) using 10 runs of 10-fold cross-
validation with cost-complexity pruning based on the mis-
classification rate to define the optimum tree size. CART vari-
able importance was calculated as the sum of goodness of
split measures for which a given variable represented the pri-
mary split, plus the adjusted agreement for all splits in which
it was a surrogate. Decision trees were graphically displayed
for the four pHClass × LabTxt scenarios using the R package
partykit (Hothorn and Zeileis 2014).

We compared the relative accuracy of our CART trees with
those produced using a Random Forests ensemble tree ap-
proach using the R package randomForest (Liaw and Weiner
2018). CART may have difficulty establishing cut-points for
smooth continuous relationships and capturing additive
structures (Hastie et al. 2009). Random Forests is designed to
reduce the variance of tree-based classifications by building
a large collection of decorrelated (bootstrap-produced) trees
and then averaging the results. We used

√
p to grow the trees,

where p is the number of independent variables, and aggre-
gated the results from 500 individual trees. Initially, all site,
pedon, and overstory variables were considered with subse-
quent variable removal based on their mean decrease in the
Gini coefficient splitting index, while ensuring the out-of-bag
classification error rate remained within 2% of the full model.

Results

Soil nutrient relationships
The largest number of substantive (τ ≥ 0.45) correlations

across soil horizons for the various chemical variables oc-
curred with F and A horizon pHCa and with A and B horizon
cation metrics (Table S1). Notably, F pHCa was well correlated
with the mineral horizons ExBase and BaSat, and moderately
so with C:N of all horizons. There were very strong correla-
tions between OrgC and TotN within each mineral soil hori-
zon (τ = 0.90–0.92), but not between horizons, and TotN was
not strongly correlated with C:N (τ < 0.30) within either min-
eral horizon.

With PCA, almost half of the total variation for both the
BHorz and AllHorz data sets was accounted for by the first
principal component (PC1) (Table S2). PC1 factor loadings for
both data sets primarily contrasted pHCa and cation metrics
with C:N ratios (Fig. 2). For the BHorz data set, the second and
third PCs accounted for 24% and 15% of the variation, and fac-
tor loadings were dominated by TotN and C:N, respectively.
For the AllHorz data set, the second and third PCs accounted
for 14% and 10% of the variation, respectively, and with PC2
TotN factor loadings contrasting with those for B-BaSat and
B-pHCa.
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Fig. 2. Principal component analyses of the BHorz (a and b) and AllHorz (c and d) soil chemistry data. Biplots of chemistry
variables (Table 2) are superimposed on the first and second and first and third PCA axes, as are their plot-level SCR assignments.
AllHorz variables are preceded by their horizon designation.

Developing and comparing soil nutrient
classifications

Both the BHorz and AllHorz K-means-derived SCRs showed
strong alignment with PC1 (Fig. 2) and broad differentiation
of pHCa, various cation metrics, and C:N between classes
(Table 2). OrgC and BHorz TotN, while strongly aligned with
PC2, did not vary consistently across the SCRs. Comparisons
of soil chemistry across Association and Ecosite SNRs also
showed a general trend of increasing nutrient levels with in-
creasing SNR richness for all three horizons (Figs. 3 and 4 and
Tables S3 and S4). As with the SCR classifications, however,

OrgC did not vary consistently across the SNRs for any hori-
zon, nor did TotN in the B horizon.

There was reasonable correspondence between the five-
category BHorzSCR and AllHorzSCR classes (V = 0.61,
τB = 0.72; Table S5). Differences in class alignment were
largely confined to poor vs. medium, and rich vs. very rich
classes, giving an overall weighted user’s accuracy of 65%.
However, when condensed into three-category classifications
(poor, medium, and rich), the weighted user’s accuracy for
predicting AllHorzSCR using BHorzSCR increased from 65%
to 85%.

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
at

ur
al

 R
es

ou
rc

es
 C

an
ad

a 
on

 0
4/

19
/2

3
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1139/cjfr-2022-0296


Canadian Science Publishing

Can. J. For. Res. 00: 1–22 (2023) | dx.doi.org/10.1139/cjfr-2022-0296 7

Table 2. BHorzSCR and AllHorzSCR chemistry by major horizon.

SCR (number of plots, AllHorz and BHorz)

Variable Horizon

Very poor
All n = 102
B n = 123

Poor
All n = 88
B n = 152

Medium
All n = 107
B n = 153

Rich
All n = 87
B n = 125

Very rich
All n = 44
B n = 65

OrgC (%) F: AllHorz 35.1 ± 7.1a 32.2 ± 7.4b 34.4 ± 6.7ab 33.1 ± 6.5ab 33.0 ± 5.2ab

A: AllHorz 1.17 ± 0.67b 0.91 ± 0.89c 1.36 ± 0.93b 1.05 ± 0.68bc 3.05 ± 2.40a

B: AllHorz 1.08 ± 0.62a 0.50 ± 0.33c 1.06 ± 0.67ab 0.44 ± 0.25c 0.90 ± 0.77b

B: Bhorz 1.36 ± 0.71a 0.41 ± 0.18c 1.24 ± 0.58a 0.41 ± 0.21c 0.74 ± 0.77b

TotN (g/kg) F: AllHorz 10.2 ± 2.0c 9.8 ± 2.3c 13.9 ± 2.5b 13.7 ± 3.2b 15.7 ± 3.9a

A: AllHorz 0.59 ± 0.32c 0.50 ± 0.64d 0.85 ± 0.58b 0.79 ± 0.52b 3.14 ± 2.29a

B: AllHorz 0.59 ± 0.07a 0.27 ± 0.15b 0.64 ± 0.36a 0.37 ± 0.15b 0.71 ± 0.48a

B: Bhorz 0.75 ± 0.41a 0.23 ± 0.08d 0.73 ± 0.34a 0.38 ± 0.23c 0.54 ± 0.44b

C:N (%) F: AllHorz 35.4 ± 9.4a 34.0 ± 9.1a 25.1 ± 5.0b 25.1 ± 6.4b 22.1 ± 5.8c

A: AllHorz 20.2 ± 5.5a 19.1 ± 6.1a 16.0 ± 3.1b 13.9 ± 3.9c 13.7 ± 4.8c

B: AllHorz 19.0 ± 4.4a 18.0 ± 4.9ab 16.3 ± 3.4b 11.9 ± 3.3c 12.2 ± 3.8c

B: Bhorz 18.7 ± 4.4a 17.8 ± 5.1a 17.3 ± 3.4a 11.2 ± 2.7c 13.0 ± 4.2b

pHCa F: AllHorz 3.3 ± 0.4e 3.7 ± 0.5d 4.1 ± 0.5c 4.6 ± 0.7b 5.4 ± 0.5a

A: AllHorz 3.5 ± 0.3d 3.8 ± 0.4c 3.9 ± 0.4c 4.6 ± 0.3b 5.4 ± 0.6a

B: AllHorz 4.4 ± 0.3c 4.9 ± 0.3b 4.4 ± 0.3c 5.0 ± 0.6b 5.7 ± 0.8a

B: Bhorz 4.2 ± 0.3d 4.7 ± 0.4c 4.6 ± 0.3c 4.9 ± 0.4b 6.3 ± 0.5a

CEC meq/1000 g A: AllHorz 20.4 ± 6.8c 17.1 ± 6.5d 21.4 ± 6.4c 28.0 ± 10.3b 36.3 ± 5.8a

B: AllHorz 9.8 ± 6.8c 10.8 ± 10.3c 14.7 ± 6.5b 36.2 ± 13.4a 40.6 ± 8.3a

B: Bhorz 12.3 ± 7.5d 8.2 ± 5.7e 16.9 ± 8.2c 34.2 ± 14.8b 39.9 ± 9.6a

ExBase meq/1000 g A: AllHorz 5.2 ± 3.8e 9.1 ± 6.3d 12.8 ± 6.3c 26.1 ± 10.6b 35.4 ± 5.7a

B: AllHorz 4.0 ± 3.0d 9.8 ± 10.3c 10.1 ± 5.5b 35.3 ± 13.8a 39.7 ± 8.1a

B: Bhorz 3.7 ± 2.4e 5.8 ± 4.4d 13.7 ± 7.7c 33.1 ± 4.9b 39.4 ± 9.3a

% BaSat A: AllHorz 25.0 ± 14.1d 51.4 ± 23.2c 59.4 ± 20.0b 92.2 ± 9.7a 97.4 ± 3.4a

B: AllHorz 45.4 ± 22.2d 86.1 ± 12.8c 69.2 ± 19.0b 96.8 ± 5.6a 97.8 ± 3.8a

B: Bhorz 32.8 ± 14.7e 71.7 ± 19.0d 81.3 ± 13.4c 95.8 ± 6.7b 98.9 ± 2.5a

Note: OrgC, organic carbon; TotN, total nitrogen; C:N, C:N ratio; pHCa, pH measured in CaCl2 suspension; CEC, cation exchange capacity; ExBase, exchangeable bases;
and BaSat, base saturation. Shown are mean values and standard deviations for F, A, and B horizons for the AllHorz data set and the Bhorz data set. Sample size (plots,
n) per SCR is shown for each data set. For each variable (row), values with the same lower case letter are not significantly different (Tukey–Cramer multiple comparison
test, p < 0.05).

There were often similar general trends (poorer to richer)
in plot-level assignment of BHorzSCRs and AllHorzSCRs and
of Association and Ecosite SNR categories. The mean user’s
accuracy relating the SNRs of the various Associations and
Ecosites to their assigned BHorz and AllHorz SCRs ranged
from 31%–39% among the four SNR–SCR combinations (Ta-
bles S6–S9). In 80%–86% of cases, however, Association and
Ecosite SNR ratings for a given plot coincided within one
category of their BHorz and AllHorz SCRs. BHorz and All-
Horz chemistry relationships with individual Associations
and Ecosites, and their SNR designations, are discussed fur-
ther in the Supplementary material.

SCR site/soil/overstory relationships
Among categorical variables (Table S10), ModDep had the

strongest association with the BHorzSCR categories (V = 0.52,
τC = 0.32), with glaciofluvial and lacustrine deposition types
strongly aligned with the poorer and richer SCR categories,
respectively. Other variables showing distinct SCR relation-
ships included BHzType (V = 0.38, τC = 0.23), CSSOrd
(V = 0.36, τC = 0.31), and AHzType (V = 0.34, τC = 0.16).
Bt horizons and Luvisols were strongly associated with rich–
very rich SCRs, whereas Bm horizons and Brunisols as well

as Podzols were concentrated in the very poor to medium
SCRs. Ae horizons were more frequently associated with
poor to medium SCRs, whereas Ah horizons were com-
monly associated with rich to very rich SCRs. TopPos (espe-
cially crest/upper vs. toe/depression) and SppType provided
some discriminating power despite limited V and τC val-
ues, while HumForm (except for mull) did not provide sub-
stantive SCR differentiation. Among continuous/ordered vari-
ables (Table S11), pHClass (VP = 0.69) followed by texture
metrics (VP = 0.42–0.46) explained the largest proportion of
BHorzSCR variation (VP). Richer SCR classes were associated
with higher pHs and finer BHorz textures. These were fol-
lowed by BThick (VP = 0.20), DrainCl (VP = 0.14), and PinePct
(VP = 0.14).

The four CART scenarios resulted in resubstitution error
rates of 29%–41%, cross-validated error rates of 34%–50%, and
56%–73% of plots correctly classified by BHorzSCR, based on
the pruned classifications (Table 3). Use of Random Forests
instead of CART had very little effect on error rates (Random
Forests out-of-bag error rates vs. CART cross-validated error
rates) when LabTxt was included as a variable, but reduced
error rates by 3.2%–4.3% when LabTxt was omitted. In almost
all cases, the majority of plots assigned by the various CART
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Fig. 3. Median F, A, and B horizon total N (TotN) and C:N ratio (C:N) values for the Association (a) and Ecosite (b) soil nutrient
regimes (SNRs). The SNR codes are as follows: (1) very poor, (2) poor, (3) medium, (4) rich, and (5) very rich. Crossbars represent
the 75th percentiles.

scenarios to a given SCR corresponded with their K-means-
based BHorzSCR designation (Table 4). The overall user’s ac-
curacy, however, varied from 59% to 71%, with the inclusion
of pHClass resulting in higher CART user’s accuracy for rich
and very rich BHorzSCRs. For scenarios 4a (both LabTxt and
pHClass) and 4c (no LabTxt) in Table 4, the users’ accuracy
was lower for the very poor to medium SCRs than the rich to
very rich SCRs. For scenario 4b (no pHClass), the differences
reflected allocation to only four of the SCRs (no allocation to
the very rich class) and, as with scenario 4d, lower accuracy
for the very poor and medium SCRs.

Inclusion of both pHClass and LabTxt resulted in the most
accurate CARTs, with LabTxt (BClay and BSand) and pHClass
driving the major splits in the classification tree (Fig. 5a).
With the other CART scenarios, the major splits depended on
whether pHClass and/or LabTxt were included. With LabTxt
included, species composition (ConPct and PinePct) played an
important role (Figs. 5a and 5b), but in its absence, BTxtCl ac-
counted for the initial split, with CFCont and BThick play-
ing important secondary roles (Figs. 5c and 5d). In both
cases, CFCont split plots with vs. without notable CFCont
amounts, and with the former loosely associated with poorer
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Fig. 4. Median F, A, and B horizon cation exchange capacity (CEC) and pH in CaCl2 (pHCa) values for the Association (a) and
Ecosite (b) soil nutrient regimes (SNRs). The SNR codes are as follows: (1) very poor, (2) poor, (3) medium, (4) rich, and (5) very
rich. Crossbars represent the 75th percentiles.

SCRs.When pHClass was included, it accounted for the high-
est order splits after LabTxt or BTxtCl (Figs. 5a and 5c), and
occurred at multiple stages of the hierarchy. Other factors
occurring at lower levels of the various hierarchies included
ModDep (LabTxt + pHClass) and TopPos and SppType (no
LabTxt or pHClass). With pHClass included, the upper por-
tions of the hierarchies usually separated the richest from
the poorer SCRs, with subsequent divisions refining sepa-
rations among SCRs 1–3. Without pHClass, the hierarchical
sequences were more varied, but generally resulted in the
richer SCRs still being separated out initially.

As expected, LabTxt (BClay and BSand), pHClass, and
BTxtCl received the highest CART variable importance rat-
ings (Table 3). These were followed by ModDep, BHzType, and
CSSOrd across all four scenarios, and with CFCont and BThick
contributing in the absence of LabTxt. Notably, two soil clas-

sification descriptors (BHzType and CSSOrd) had substantive
importance ratings but did not appear in the pruned classifi-
cation trees. In comparison, species composition had low im-
portance rankings across all scenarios except in the absence
of both LabTxt and pHClass. With Random Forests, variable
importance rankings were similar to those embedded in the
CART keys, although BThick played a primary role in the ab-
sence of LabTxt, and SMR contributed in the absence of pH-
Class.

Discussion

Sampling approach
In this study, our goal was to characterize general trends

in profile soil chemistry across the broad range of upland As-
sociations and Ecosites in northwestern Ontario. We chose
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Table 3. Classification tree (CART) and Random Forests results predicting
BHorzSCR from site and pedon variables.

LabTxt and pHClass variable combination

Classification accuracy
LabTxt and

pHClass
LabTxt, no

pHClass
pHClass, no

LabTxt
No LabTxt, no

pHClass

CART resubstitution error
rate (%)

28.9 40.7 32.3 40.7

CART cross-validated error
rate (%)

34.7 44.8 41.8 50.0

Random Forests out-of-bag
error rate (%)

33.2 43.0 38.6 45.7

CART % classified correctly 72.7 55.8 70.0 61.9

CART variable importance (% contribution, including surrogate splits)/Random Forests
importance (mean decrease in the Gini coefficient for specified model variables). N = not

identified as important

BSand 20/110 24/90 n/a n/a

BClay 18/91 21/81 n/a n/a

pHClass 16/78 n/a 22/85 n/a

BTxtCl 12/N 15/35 15/80 16/64

ConPct 1/40 3/42 3/53 7/63

PinePct 2/47 3/50 4/62 7/72

CFCont 1/N 1/35 10/56 11/47

BThick 0/65 0/66 8/99 6/105

BHzType 9/N 11/N 8/N 11/N

ModDep 9/N 9/N 13/N 13/39

CSSOrd 8/N 10/N 9/N 10/N

TopPos 3/N 0/N 2/N 4/N

SppType 0/N 2/N 0/N 4/N

SMR 1/N 1/31 4/N 6/43

DrainCl 0/N 0/N 2/N 5/N

AHzType 0/N 0/N 0/N 5/N

Note: Shown are the best-fit error rates and Variable Importance for classification schemes with/without lab
texture and pHCa class. Shaded variables contributed directly to the pruned CART diagrams. Definitions of
the variables are given in Table 1.

to sample one pedon and multiple horizons from a large
number of 10 × 10 m plots rather than taking multiple sub-
samples at one or two depths from a smaller number of
plots. Trade-offs involve defining the population of interest
and how best to sample it, given the resources available and
the level of accuracy required (Binkley and Fisher 2020, pp.
243–247). Our approach provided reasonable inferences for
the entire study area, but likely with somewhat less accu-
racy than if we had subsampled within plots. Very small sam-
ple sizes (numbers of plots) taken over a limited range of
Ecosite SNRs (medium–very rich) undoubtedly contributed to
the paucity of statistical differences Tamminga et al. (2014)
found in Ecosite soil chemistry.

Soil nutrient relationships
The high PC1 factor loadings and strong correlations we

found between pH and cation availability are commonly re-
ported for forest soils and likely reflect interactions among
acid and base cation availability, cation exchange sites, and
soil solution hydrogen ion concentration (Chapin et al. 2011;
Mueller et al. 2012). Offsetting these, the sizeable negative
PC1 loadings for C:N are consistent with the reduction in for-

est soil C:N ratios frequently associated with increases in soil
pH (Van Sundert et al. 2018). In comparison, while TotN was
the leading PC2 variable for both data sets, it did not play an
important role in defining the BHorz SCRs. However, both
F and A horizon TotN values increased consistently across
the AllHorzSCRs (Table 2) and the two SNR classifications
(Fig. 3).

The weak mineral soil N vs. C:N correlations and multi-
variate linkages seem counterintuitive given their common
association with gradients in site productivity (Van Cleve et
al. 1983), soil quality (Schoenholtz et al. 2000), and some
vegetation-based soil nutrient regimes (Chen et al. 1998;
Wang 2000; Kranabetter et al. 2007). They are consistent,
however, with other soil nutrient studies (Klinka et al. 1994;
Cools et al. 2014; Stevenson et al. 2015) and may reflect the
strong influence of OrgC composition on such relationships
(Booth et al. 2005).

Developing and comparing soil nutrient
classifications

Given the importance of soil C and N for ecosystem func-
tioning, the lack of clear differentiation of OrgC and, to
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Table 4. Confusion matrices of CART results predicting BHorz SCR (B horizon soil chemistry regime) plot
allocations from site and soil pedon variables.

(a) LabTxt and pHClass: V = 0.720, τB = 0.700.

Actual Bhorz SCR

Predicted
plots (n)

User’s accuracy (%)

Predicted BHorz
SCR Very poor Poor Medium Rich Very rich Specific General

Very poor 77 18 20 2 0 117 66 92

Poor 15 90 9 14 0 128 70

Medium 21 33 111 20 0 185 60

Rich 0 0 8 75 0 83 90 93

Very rich 0 1 0 1 45 47 96

Actual plots (n) 113 142 148 112 45 560 Overall accuracy (%)

71 92

(b) LabTxt, no pHClass: V = 0.565, τB = 0.552

Actual Bhorz SCR

Predicted
plots (n)

User’s accuracy (%)

Predicted Bhorz
SCR

Very poor Poor Medium Rich Very rich Specific General

Very poor 63 26 24 8 4 125 51 89

Poor 14 84 7 13 0 118 71

Medium 35 32 109 15 11 202 54

Rich 0 0 8 77 30 115 67 93

Very rich 0 0 0 0 0 0 n/a

Actual plots (n) 112 142 148 113 45 560 Overall accuracy (%)

60 90

(c) pHClass, no LabTxt: V = 0.682, τB = 0.657

Actual SCR Predicted
plots (n)

User’s accuracy (%)

Predicted SCR Very poor Poor Medium Rich Very rich Specific General

Very poor 86 34 29 5 0 154 55 91

Poor 9 87 24 17 2 139 63

Medium 17 20 91 14 1 143 64

Rich 1 0 4 73 0 78 94 95

Very rich 0 1 0 3 42 46 91

Actual plots (n) 113 143 148 112 45 560 Overall accuracy (%)

68 92

(d) No LabTxt, no pHClass: V = 0.513, τB = 0.566

Actual SCR Predicted
plots (n)

User’s accuracy (%)

Predicted SCR Very poor Poor Medium Rich Very rich Specific General

Very poor 66 30 21 6 3 126 53 89

Poor 8 75 12 11 1 107 70

Medium 38 37 111 21 8 215 51

Rich 1 0 3 63 16 83 76 96

Very rich 0 0 1 11 17 29 59

Actual plots (n) 113 142 148 112 45 560 Overall accuracy (%)

59 90

Note: Shown are the predicted and actual SCR plot counts and user’s accuracy for variable combinations that included or excluded LabTxt (%
sand and % clay) and/or pHCa class. Definitions of the variables are given in Table 1.

a lesser extent, TotN among SNR and SCR classes suggests
that further refinements or separate SCR classifications for
these two variables are warranted. For instance, B horizon K-
means clustering of log-transformed OrgC and TotN produced
a well-defined classification, but with little relationship to the
BHorzSCR or Association and Ecosite SNRs (τB < 0.1) (data
not presented). The correspondence of mineral soil OrgC with

SNRs is complicated by the influence of soil moisture as well
as by its own chemical composition. On drier upland soils,
OrgC may serve as an integrative soil quality metric, given
its relationship with N and P storage and its provision of
cation and anion exchange sites (Van Cleve and Powers 1995).
However, on wetter soils, partial anoxic conditions may
reduce stand productivity and mineralization rates while

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
at

ur
al

 R
es

ou
rc

es
 C

an
ad

a 
on

 0
4/

19
/2

3
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1139/cjfr-2022-0296


Canadian Science Publishing

12 Can. J. For. Res. 00: 1–22 (2023) | dx.doi.org/10.1139/cjfr-2022-0296

Fig. 5. Classification trees relating BHorz SCRs (soil chemistry regimes) to site, pedon, and stand variables (Table 1): (a) with
pHClass and LabTxt included; (b) with LabTxt but not pHClass included; (c) with pHClass but not LabTxt included; and (d) with
neither pHClass nor LabTxt included as potential explanatory variables.

enhancing OrgC storage. Thus, OrgC relationships with other
soil chemistry metrics as well as with site productivity may
be parabolic across broad SMR categories (Van Sundert et al.
2018). Nevertheless, good differentiation of C:N across the
current SNR and SCR categories suggests these classification

schemes capture important components of C and N dynam-
ics, such as litter quality, degree of humification, and rates of
nutrient cycling (Zhang et al. 2010).

The large increases in SNR user’s accuracy when mov-
ing from direct five-class SNR:SCR pairings to SNR matches
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Fig. 5. (concluded).

within ±1 SCR class suggest that the use of a three-class SCR
may be more realistic. This is supported by the statistical dif-
ferentiation of C:N, pHCa, CEC, and BaSat across three to four
rather than all five SCR and SNR categories. Chen et al. (1998)
and Wang (1997) also found substantial increases in the SNR
user’s accuracy when comparing with ±1 SCR class, while
numerous authors, including Klinka et al. (1994), Splechtna

and Klinka (2001), and Kranabetter et al. (2007), have noted
clear differentiation of most individual nutrients across no
more than three SCR/SNR classes. This is also consistent with
edatopic descriptions of individual Associations and Ecosites,
which frequently show them overlapping across adjacent
SNRs (Ontario Ministry of Natural Resources 2009a, 2009b;
Chapman et al. 2020).
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A few Associations and Ecosites were also assigned a broad
range of BHorz and/or AllHorz SCRs. For some boreal types,
the effects of wildfire frequency and intensity may directly
affect soil chemical properties as well as stand composition
(Maynard et al. 2014; Hume et al. 2016). Further, productivity-
based SNRs at the poorer end of the spectrum may largely
reflect physical limitations resulting from shallow soils, very
coarse textures, and/or high stone contents, rather than soil
chemical parameters (Schmidt and Carmean 1988). The re-
lationships of particular chemical variables with individual
Association and Ecosite SNRs (Figs. S2 and S3) also suggest
re-evaluation of SNR designations for some site types.

Notably, the mean BHorzSCR and AllHorzSCR users’ accu-
racy was similar for both the Association and Ecosite SNR
classifications. While the Association and Ecosite typologies
are based on different criteria (largely vegetation vs. soil/site
based), they overlap in their approach to SNR designation.
Overstory conditions are directly embedded in the Ecosite
definitions, while site and soil conditions related to the var-
ious Associations are used to help infer their SNRs. Positive
relationships between the Association SNRs and our SCRs are
also consistent with studies showing good correlations be-
tween soil chemistry and indicator plant species (Wilson et
al. 2001; Ewald and Ziche 2017).

SCR site/soil/overstory relationships
SNR field-oriented keys commonly identify humus form

followed by soil depth and A horizon type as primary dis-
tinguishing attributes (e.g., Klinka et al. 1994; DeLong et
al. 2011; Keys et al. 2011). In contrast, initial splits in our
CART-based BHorzSCR keys were largely based on soil tex-
ture and pH (where available), followed by overstory com-
position. This likely reflects both the broad array of stand
types we considered and the importance of both pH and
soil texture as integrative variables that covary with several
other chemical measures (Giesler et al. 1998; Vesterdal and
Raulund-Rasmussen 1998; Callesen and Raulund-Rasmussen
2004; Callesen et al. 2007, 2019). Finer soil textures provide
more numerous cation exchange sites (Hassink 1997) while
soil pH has strong biogeochemical linkages with cation ex-
change capacity and base cation availability, and both met-
rics often covary with C:N (Meiwes et al. 1986; Hobara et al.
2016; Van Sundert et al. 2018).

Overstory composition repeatedly appeared as an im-
portant variable in the various CART and Random Forest
BHorzSCR classifications. In this region, deciduous forests
occur more frequently on richer sites, whereas conifer-
dominated forests occupy a broader spectrum of sites and
are often found on drier, nutrient-poor soils (Chapman et al.
2020). These relationships reflect species’ autecological char-
acteristics and community assembly along edaphic gradients
(Cools et al. 2014; Shaw et al. 2015; Strand et al. 2016), but
also involve the effects of individual species (e.g., litter qual-
ity and input rates) on soil chemistry at a given site (Vesterdal
and Raulund-Rasmussen 1998; Hobbie et al. 2007; Augusto et
al. 2015). This suggests that a site’s actual chemistry signature
may differ to some extent depending on the overstory com-
position. While not a soil parameter, overstory type increased

the prediction accuracy for determining SCRs from site and
soil pedon variables. However, when linking SCRs to SNRs, its
use as a predictor of those relationships is somewhat tauto-
logical, since overstory composition is a defining feature of
Association and Ecosite typologies.

Mode of deposition and soil taxonomic groupings have of-
ten been used as indicators of soil nutrient status, given their
relationship to dominant soil-forming factors (Cools et al.
2014; Shaw et al. 2015; Stevenson et al. 2015; Strand et al.
2016). While BHzType (V = 0.379) and CSSOrd (V = 0.357) were
not included directly in any of the pruned CART or Random
Forests models, both contributed substantively to surrogate
CART splits across all four models. The use of finer soil tax-
onomic units (e.g., CSSC Great Groups) may provide greater
SCR discriminatory power (Shaw et al. 2015).

It was surprising that humus form showed limited cor-
respondence with the BHorzSCR classification (τC = 0.142)
and was not a contributing variable in the Random Forests
or pruned CART models. This may reflect the reduced influ-
ence of litter inputs and organic horizon characteristics on
soil chemistry at depth (Vesterdal and Raulund-Rasmussen
1998); the limited number of plots with mull or moder humus
types included in our study; and the inclusion of overstory
species categories that covary with humus form and provide
strong linkages with B horizon chemistry (Hobbie et al. 2007;
Mueller et al. 2012).

Topographic position, while commonly covarying with nu-
trient as well as moisture availability (Bridge and Johnson
2000; Moeslund et al. 2013), was not selected by Random
Forests and only contributed to the BHorz CART model in the
absence of LabTxt and pHClass. Otherwise, related variations
in the latter two variables, and hence base cations (Giesler et
al. 1998; Hobbie et al. 2007; Van Sundert et al. 2018), provided
greater explanatory power. The absence of bedrock mineral-
ogy as a discriminating CART variable, despite its common
use as an indicator of soil nutrient status (DeLong et al. 2011;
Eimel-Fraga et al. 2014), may reflect the limited variation in
regional geology and/or the importance of recent glacial pro-
cesses (Wester et al. 2018). Soil parent materials can be dis-
connected from the underlying bedrock, depending on the
degree of glacial and postglacial movement and subsequent
pedogenic development (Akselsson et al. 2006; Thiffault et al.
2013).

General observations and future work
Given their different origins, there is no a priori reason

why SNR and SCR classifications should be directly aligned.
SNR classifications are inferred from easily observed site and
soil morphological characteristics (e.g., Fig. S1), often with
emphasis on stand productivity (Wang 1997; Splechtna and
Klinka 2001). As such, they are also intimately linked to
and strongly covary with soil moisture regimes (Klinka et al.
1994). It is also possible to have different versions of SCRs
depending on the chemical metrics and soil depths of inter-
est. Much of our analysis was based on SCRs derived from
K-means clustering with equal weighting of TotN, C:N, CEC,
BaSat, and pHCa within and between horizons. Different
chemistry weighting schemes and various depth functions
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can be used, depending on purpose (Van Sundert et al. 2018;
Ma et al. 2021). In terms of site productivity, the inclusion
of soil carbon, nitrogen, and pH metrics (Van Sundert et al.
2019), together with soil texture and “available” P, may pro-
vide a good basis.

This study highlights the potential for considering SCRs in
combination with inferred SNRs to extend the applications of
the eastern boreal CNVC Associations and Ontario’s Ecosites.
The interacting effects of multiple stressors (e.g., elevated at-
mospheric deposition, increased disturbance frequency, cli-
mate change, and invasive species) emphasize the need to
better characterize a variety of chemical factors and inputs
(e.g., Ouimet et al. 2013; McLaughlin 2014; Vadeboncoeur et
al. 2014). Identifying soil chemical properties associated with
these ecological classifications represents a foundational ad-
dition, broadening their possible applications (e.g., Timmer
and Ray 1988).

Further analyses could address the following: (1) including
soil chemistry data sets from adjacent regions to broaden re-
lationships; (2) focusing on Associations and Ecosites that are
underrepresented in the current analysis; (3) using plant in-
dicator species to help identify SCRs and individual nutri-
ent relationships; (4) refining predictions of individual nu-
trients, particularly OrgC and TotN; (5) including additional
nutrients such as phosphorous, which also limits produc-
tivity in some northern glaciated landscapes (Vadeboncoeur
2010; Ouimet and Moore 2015); (6) exploring and untangling
soil chemistry–soil moisture relationships; (7) incorporating
depth functions to better account for vertical variations in
soil properties and to address nutrient quantities on an area
basis (Ma et al. 2021); and (8) using terrain analysis to develop
spatial models for mapping SCRs and individual nutrients us-
ing linkages with topographic position, landform and vege-
tation (e.g., Zhao et al. 2013; Blackford et al. 2021).

Conclusions
Soil pH, CEC, and BaSat were well correlated within and

across horizons, and together with C:N, they largely dis-
tinguished the five K-means-derived SCR categories. C:N de-
creased while pH and cation metrics, but not OrgC or TotN,
consistently increased with increasing SCR and SNR rich-
ness. The Association and Ecosite SNRs showed broad agree-
ment with the BHorzSCRs and AllHorzSCRs. In most cases,
individual nutrients were clearly distinguished across three
to four SNR/SCR classes, and the users’ accuracies increased
markedly for SNR values within ±1 SCR class. Thus, using
three-category SCR classifications to distinguish Association
and Ecosite soil chemistry may be most appropriate. With
CART, pHClass, soil texture, and overstory composition were
the principal soil and stand factors discriminating BHorzSCR
categories. Notably, the inclusion of pHClass increased pre-
diction accuracy from around 60% to 70%. The continued de-
velopment of quantitatively derived SCRs should enhance the
ability of ecological classifications to capture a wider variety
of chemical properties, improve forest growth modelling ef-
forts, and increase the utility of these classifications for ad-
dressing various impacts on ecosystem function and health.
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Table A1. Description of CNVC Associations (Eastern North American Boreal Forest Macrogroup M495) used in this paper.

Association code
(number of plots) Scientific name Parent material

Topographic
position

Root zone
texture Humus form

Soil moisture
regime

Inferred soil
nutrient regime

CNVC00207 (69) Pinus banksiana (Picea
mariana)/Vaccinium
angustifolium/Pleurozium schreberi

Glaciofluvial (53),
moraine/till (31)

Crest/upper (44),
mid (24), level
(21)

Sandy (60),
coarse (C.)
loamy (28)

Mor (77), moder
(20)

Dry (61), mesic
(29)

Poor

CNVC00208 (189) Picea mariana——P. banksiana/V.
angustifolium/P. schreberi

Moraine/till (40),
glaciofluvial (31)

Crest/upper (40),
mid (23), level
(19)

C. loamy (39),
sandy (35)

Mor (69), moder
(23)

Mesic (37), dry
(32), moist (21)

Poor

CNVC00213 (21) Populus tremuloides——Betula
papyrifera——P. mariana——P.
banksiana/Diervilla lonicera/P. schreberi

Moraine/till (48),
glaciofluvial (29)

Crest/upper (37),
mid (35)

C. loamy (45),
sandy (32)

Mor (76), moder
(18)

Mesic (60), dry
(21), moist (16)

Medium

CNVC00215 (9) Betula papyrifera——P. tremuloides——P.
banksiana/Acer spicatum/Clintonia
borealis

Moraine/till (55),
glaciofluvial (25)

Crest/upper (39),
mid (32)

Sandy (33), C.
loamy (30)

Mor (70), moder
(27)

Mesic (61), dry
(28)

Rich

CNVC00217 (15) Picea mariana——Abies
balsamea/Rhododendron groenlandicum/P.
schreberi

Moraine/till (57),
glaciofluvial (18)

Mid (39),
crest/upper (33)

C. loamy (46),
sandy (27)

Mor (85), moder
(10)

Mesic (63),
moist (20)

Medium

CNVC00231 (41) Abies balsamea——B. papyrifera——P.
tremuloides/C. borealis

Moraine/till (57),
lacustrine (13),
glaciofluvial (12)

Mid (42),
crest/upper (26)

C. loamy (37),
sandy (21)

Mor (74), moder
(19)

Mesic (71),
moist (17)

Medium

CNVC00235 (18) Abies balsamea——B. papyrifera/A. spicatum Moraine/till (69),
glaciofluvial (10)

Mid (56),
crest/upper (20)

C. loamy (40),
sandy (17), silty
(12)

Mor (71), moder
(24)

Mesic (78),
moist (15)

Rich

CNVC00239 (15) Betula papyrifera (P. tremuloides)/A.
spicatum/C. borealis

Moraine/till (74),
glaciofluvial (10)

Mid (61),
crest/upper (21)

C. loamy (47),
sandy (18)

Mor (78), moder
(18)

Mesic (82),
moist (14)

Rich

CNVC00241 (20) Populus tremuloides (P. balsamifera)/Alnus
incana/Eurybia macrophylla

Glaciolacustrine
(56), moraine/till
(13)

Level (48), mid
(26)

Clayey (40), fine
(F.) loamy (17),
C. loamy (14)

Mor (59), moder
(24), mull (12)

Moist (59),
mesic (33)

Very rich
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Table A1. (concluded).

Association code
(number of plots) Scientific name Parent material

Topographic
position

Root zone
texture Humus form

Soil moisture
regime

Inferred soil
nutrient regime

CNVC00245 (9) Pinus banksiana/V. angustifolium/Cladina
spp.

Glaciofluvial (35),
bedrock (19),
moraine/till (16)

Crest/upper (68),
mid (19)

Sandy (43),
bedrock (26), C.
loamy (26)

Mor (89), moder
(7)

Dry (73), very
dry (20)

Very poor

CNVC00256 (10) Picea glauca——A. balsamea/Streptopus
lanceolatus/P. schreberi

Lacustrine (48),
glaciofluvial (24),
moraine/till (20)

Crest/upper (39),
mid (37)

C. loamy (38),
Sandy (19)

Mor (54), moder
(44)

Mesic (53),
moist (28)

Rich

CNVC00272 (10) Populus tremuloides——P. mariana/A.
incana

Lacustrine (35),
glaciolacustrine
(25), moraine/till
(20)

Level (44),
crest/upper (21),
mid (18)

Clayey (34), F.
loamy (18), silty
(18)

Mor (59), moder
(29)

Moist (47), Mesic
(41)

Rich

CNVC00276 (13) Picea mariana/R. groenlandicum——V.
angustifolium/P. schreberi (Sphagnum
spp.)

Moraine/till (56),
organic (17),
glaciolacustrine
(10)

Mid (35), level
(33), lower/toe
(16)

Organic (40), C.
loamy (22),
sandy (16)

Mor (56),
peatymor (40)

Moist (44),
mesic (30), wet
(22)

Poor

CNVC00282 (9) Picea mariana/R. groenlandicum——Kalmia
angustifolia/Sphagnum spp.

Organic (45),
moraine/till (24),
glaciolacustrine
(20)

Level (67), mid
(13), lower/toe
(11)

Organic (47),
sandy (5)

Peatymor (82),
mor (17)

Wet (65), moist
(28)

Very poor

CNVC00295 (9) Picea mariana/A. incana/P. schreberi Glaciolacustrine
(39), moraine/till
(26), organic (18)

Level (49),
lower/toe (21),
mid (21)

Organic (36),
clayey (22), F.
loamy (7)

Mor (60),
peatymor (38)

Moist (39), wet
(37), mesic (22)

Rich

Note: Detailed factsheets are available at cnvc-cnvc.ca and cfs.nrcan.gc.ca/publications. The number of plots refers to our BHorz soil chemistry data only, whereas the proportional frequencies of classes for the different
variables (e.g., parent material) refer to the most common classes for the Association as a whole.

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
at

ur
al

 R
es

ou
rc

es
 C

an
ad

a 
on

 0
4/

19
/2

3
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1139/cjfr-2022-0296
http://www.cnvc-cnvc.ca/
https://cfs.nrcan.gc.ca/publications


C
anadian

S
cience

P
ublishing

C
an.J.For.R

es.00:1–22
(2023)

|dx.doi.org/10.1139/cjfr-2022-0296
21

Table A2. Description of Ontario Ecological Land Classification Ecosites used in this paper (Ontario Ministry of Natural Resources 2009a, b).

Ecosite code
(number of
plots) Ecosite Name

Overstory species, including
dominant % cover

Mode of
deposition;
depth Topo-position

Root zone
texture Humus form SMR SNR

B033 Tt/Tl (34) Dry, sandy: red
pine——white pine
conifer

Pinus resinosa +/Pinus
strobus >20%; often Betula
papyrifera, Pinus banksiana,
Picea mariana, Abies balsamea

Glaciofluvial;
deep

Level/lower/mid Sandy Fibrimor Dry Very poor

B034 Tt/Tl (61) Dry, sandy; jack
pine——black spruce
dominated

Picea mariana +/P. banksiana
+/B. papyrifera >80%; B.
papyrifera <20%

Glaciofluvial;
deep

Level/lower/mid Sandy Fibrimor Dry Very poor

B035 Tt/Tl (19) Dry, sandy;
pine——black spruce
conifer

Pinus banksiana +/P.
mariana >50% conifer cover;
often P. tremuloides, B.
papyrifera, A. balsamea

Glaciofluvial;
deep

Level/lower/mid Sandy Fibrimor Dry Very poor

B040 Tt/Tl (17) Dry, sandy:
aspen——birch
hardwood

Hardwood: Populus spp.
+/Betula spp., >50% hardwood
cover; often P. banksiana, P.
mariana, A. balsamea, Picea
glauca

Morainal,
glaciofluvial;
deep

Level/lower/mid Sandy Fibrimor Dry Poor

B048 Tt/Tl (34) Dry——fresh, coarse;
red pine——white pine
conifer

Pinus resinosa +/P.
strobus >20%; often B.
papyrifera, A. balsamea, P.
tremuloides

Morainal;
deep

Crest/upper/mid Coarse loamy Fibrimor Fresh Poor

B049 Tt/Tl (76) Dry——fresh, coarse;
jack pine——black
spruce dominated

Conifer/mixedwood: P.
mariana +/P. banksiana +/B.
papyrifera >90%; B.
papyrifera <20%

Morainal;
deep

Crest/upper/mid Coarse loamy Fibrimor Fresh Poor

B050 Tt/Tl (34) Dry——fresh, coarse;
pine——black spruce
conifer

Pinus +/P. mariana >50%; often
P. tremuloides, B. papyrifera, A.
balsamea, P. glauca

Morainal;
deep

Crest/upper/mid Coarse loamy Fibrimor Fresh Poor

B052 Tt/T (11) Dry——fresh, coarse;
spruce——fir conifer

Picea spp. +/A. balsamea >50%;
often P. tremuloides, B.
papyrifera, P. mariana

Morainal;
deep

Crest/upper/mid Coarse loamy Fibrimor Fresh Medium

B055 Tt/Tl (38) Dry——fresh, coarse;
aspen——birch
hardwood

Populus tremuloides +/B.
papyrifera >50%; often A.
balsamea, P. glauca, P. mariana

Morainal;
deep

Crest/upper/mid Coarse loamy Fibrimor Fresh Medium

B065 Tt/Tl (38) Moist, coarse; black
spruce——pine conifer

Picea mariana +/P.
banksiana >50% of conifer spp.

Morainal;
deep

Many Coarse loamy Fibrimor Moist Poor
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Table A2. (concluded).

Ecosite code
(number of
plots) Ecosite Name

Overstory species, including
dominant % cover

Mode of
deposition;
depth Topo-position

Root zone
texture Humus form SMR SNR

B070 Tt/Tl (10) Moist, coarse;
aspen——birch
hardwood

Populus tremuloides +/B.
papyrifera >50%; often A.
balsamea, P. glauca, P. mariana,
P. banksiana

Morainal;
deep

Many Coarse loamy Fibrimor Moist Medium

B082 Tt/Tl (20) Fresh, clayey; black
spruce——jack pine
dominated

Picea mariana +/P.
banksiana >90%; B.
papyrifera <20%

Glacio-
lacustrine;
deep

Level/upper/mid Clayey Fibrimor Fresh Rich

B083 Tt/Tl (23) Fresh, clayey; black
spruce——pine conifer

Picea mariana +/P.
banksiana >50% of conifer
cover; often Populus
tremuloides, A. balsamea

Glacio-
lacustrine;
deep

Level/upper/mid Clayey Fibrimor Fresh Rich

B085 Tt/Tl (11) Fresh, clayey;
spruce——fir conifer

Abies balsamea +/P. glauca >

50% of conifer cover; often P.
tremuloides, P. mariana, B.
papyrifera

Glacio-
lacustrine;
deep

Level/upper/mid Clayey Fibrimor Fresh Very rich

B088 Tt/Tl (37) Fresh, clayey;
aspen——birch
hardwood

Populus tremuloides +/Betula
spp. >50%; often A. balsamea,
P. mariana, P. glauca

Glacio-
lacustrine;
deep

Level/upper/mid Clayey Fibrimor Fresh Very rich

B098 Tt/Tl (9) Fresh, silty-fine
loamy; black
spruce——jack pine
dominated

Picea mariana +/P. banksiana
+/B. papyrifera >90%; B.
papyrifera <20%

Morainal;
deep

Level/upper/mid Silty Fibrimor Fresh Rich

B099 Tt/Tl (16) Fresh, silty-fine
loamy; black
spruce——pine conifer

Picea mariana +/P.
banksiana >50%; often P.
tremuloides, A. balsamea, B.
papyrifera

Glaciofluvial;
deep

Level/upper/mid Silty Fibrimor Fresh Rich

B104 Tt/Tl (10) Fresh, silty-fine
loamy; aspen——birch
hardwood

Populus tremuloides +/Betula
spp. >50%; often A. balsamea,
P. glauca, P. mariana

Glacio-
lacustrine;
deep

Level/upper/mid Silty Fibrimor Fresh Very rich

B130 Tt/Tl (11) Intolerant hardwood
swamp

Fraxinus nigra +/P. tremuloides
+/Populus balsamifera >50%;
often A. balsamea, B. papyrifera,
P. mariana, P. glauca

n/a; deep Level/depression N/A N/A Very moist Very rich

B222 Tt/Tl (13) Mineral poor conifer
swamp

Picea mariana Glacio-
lacustrine;
deep

Depression/level Coarse loamy Fibrimor Very moist Poor

B223 Tt/Tl (11) Mineral intermediate
conifer swamp

Picea mariana; often Larix
laricina +/Alnus rugosa

Glacio-
lacustrine;
deep

Depression/level Coarse loamy Fibrimor Very moist Medium

B224 Tt/Tl (13) Mineral-rich conifer
swamp

Thuja occidentalis; often P.
mariana +/A. balsamea +/P.
glauca +/P. tremuloides

N/A; deep Depression/level Coarse loamy Fibrimor Very moist Rich

Note: The +/− designations indicate and/or.
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